SAT Math Level 2 Practice Paper 9

SET 1

- **1.** The coordinates of the vertex of the parabola whose equation is $y = 2x^2 + 4x 5$ are
- A. (2, 11)
- B. (-1, -7)
- C. (1, 1)
- D. (-2, -5)
- E. (-4, 11)
- **2.** The range of the function

$$f = \{(x, y): y = 5 - 4x - x^2\}$$
 is

- A. $\{y: y \le 0\}$
- B. {*y*:*y* ≥ -9}
- C. {*y*:*y* ≤ 9}
- D. $\{y: y \ge 0\}$
- E. {*y*:*y* ≤ 1}
- **3.** The equation of the axis of symmetry of the function $y = 2x^2 + 3x 6$ is

A.
$$x = -\frac{3}{2}$$

B. $x = -\frac{3}{4}$
C. $x = -\frac{1}{3}$
D. $x = \frac{1}{3}$
E. $x = \frac{3}{4}$

- **4.** Find the zeros of $y = 2x^2 + x 6$.
- A. 3 and 2

B. -3 and 2

C. $\frac{1}{2}$ and $\frac{3}{2}$
D. $-\frac{3}{2}$ and 1
E. $\frac{3}{2}$ and -2
5. The sum of the zeros of $y = 3x^2 - 6x - 6x^2$
A2
$B_{-} = \frac{4}{3}$
C. $\frac{4}{3}$
D. 2
E. 6
6. x ² + 2x + 3 = 0 has
A. two real rational roots
B. two real irrational roots
C. two equal real roots
D. two equal rational roots
E. two complex conjugate roots

7. A parabola with a vertical axis has its vertex at the origin and passes through point (7,7). The parabola intersects line y = 6 at two points. The length of the segment joining these points is

4 is

A. 14

B. 13

C. 12

- D. 8.6
- E. 6.5

SET 2

1. $P(x) = ax^4 + x^3 - bx^2 - 4x + c$. If P(x) increases without bound as x increases without bound, then, as x decreases without bound, P(x)

A. increases without bound

B. decreases without bound
C. approaches zero from above the x-axis
D. approaches zero from below the x-axis
E. cannot be determined
2. Which of the following is an odd function?
I. $f(x) = 3x^3 + 5$
II. $g(x) = 4x^6 + 2x^4 - 3x^2$
III. $h(x) = 7x^5 - 8x^3 + 12x$
A. only I
B. only II
C. only III
D. only I and II
E. only I and III
3. How many possible rational roots are there for $2x^4 + 4x^3 - 6x^2 + 15x - 12 = 0$?
A. 4
B. 6
C. 8
D. 12
E. 16
4. If both x - 1 and x - 2 are factors of $x^3 - 3x^2 + 2x - 4b$, then b must be
A. 0
B. 1
C. 2
D. 3
E. 4
5. If $3x^3 - 9x^2 + Kx - 12$ is divisible by $x - 3$, then $K =$
A40
B3

C. 3

D. 4

E. 22

6. Write the equation of lowest degree with real coefficients if two of its roots are -1 and 1 + i.

- A. $x^3 + x^2 + 2 = 0$ B. $x^3 - x^2 - 2 = 0$
- C. $x^3 x + 2 = 0$
- D. $x^3 x^2 + 2 = 0$
- E. none of the above

SET 3

1. Which of the following is equivalent to $3x^2 - x < 2$?

A. $\frac{-\frac{3}{2} < x < 1}{2}$ B. $\frac{-1 < x < \frac{2}{3}}{3}$ C. $\frac{-\frac{2}{3} < x < 1}{2}$ D. $\frac{-1 < x < \frac{3}{2}}{2}$ E. $\frac{x < -\frac{2}{3} \text{ or } x > 1}{2}$ 2. Solve $x^5 - 3x^3 + 2x^2 - 3 > 0$. A. $(-\infty, -0.87)$ B. (-1.90, -0.87)C. $(-1.90, -0.87) \cup (1.58, \infty)$ D. (-0.87, 1.58)E. $(1.58, \infty)$

3. The number of integers that satisfy the inequality $x^2 + 48 < 16x$ is

A. 0

B. 4

C. 7

D. an infinite number

E. none of the above

SET 4

1. Express cos 320° as a function of an angle between 0° and 90°.

- A. $\cos 40^{\circ}$
- B. sin 40°
- C. $\cos 5^{\circ}$
- D. sin 50°
- E. none of the above
- **2.** If point *P*(-5,12) lies on the terminal side of $\mathbb{Z}\theta$ in standard position, sin θ =
- A. $-\frac{12}{13}$ B. $\frac{-5}{12}$ C. $\frac{-5}{13}$ D. $\frac{12}{13}$ E. $\frac{12}{5}$ 3. If $\sec \theta = -\frac{5}{4}$ and $\sin \theta > 0$, then $\tan \theta =$ A. $\frac{4}{3}$ B. $\frac{3}{4}$ C. $-\frac{3}{4}$

D. $-\frac{4}{3}$

E. none of the above

- **4.** If *x* is an angle in quadrant III and $\tan(x 30^\circ) = \cot x$, find *x*.
- A. 240°
- B. 225°
- C. 210°
- D. 60°
- E. none of the above
- 5. If 90° < α < 180° and 270° < β < 360°, then which of the following *cannot* be true?
- A. sin α = sin β
- B. tan $\alpha = \sin \beta$
- C. tan α = tan β
- D. sin $\alpha = \cos \beta$
- E. sec $\alpha = \csc \beta$
- **6.** Expressed as a function of an acute angle, $\cos 310^\circ + \cos 190^\circ =$
- A. -cos 40°
- B. cos 70°
- C. -cos 50°
- D. sin 20°
- E. -cos 70°
- SET 5
- 1. An angle of 30 radians is equal to how many degrees?
- π A. 30
- B. $\frac{\pi}{6}$

C. $\frac{30}{\pi}$

<u>540</u> D. π

Ε. π

2. If a sector of a circle has an arc length of 2π inches and an area of 6π square inches, what is the length of the radius of the circle?

- A. 1
- B. 2
- C. 3
- D. 6
- E. 12

3. If a circle has a circumference of 16 inches, the area of a sector with a central angle of 4.7 radians is

- A. 10
- B. 12
- C. 15
- D. 25
- E. 48

4. A central angle of 40° in a circle of radius 1 inch intercepts an arc whose length is *s*. Find *s*.

- A. 0.7
- B. 1.4
- C. 2
- D. 3
- E. 40

5. The pendulum on a clock swings through an angle of 25°, and the tip sweeps out an arc of 12 inches. How long is the pendulum?

- A. 1.67 inches
- B. 13.8 inches
- C. 27.5 inches
- D. 43.2 inches
- E. 86.4 inches