SAT Math Level 2 Practice Paper 9

SET 1

1. The coordinates of the vertex of the parabola whose equation is $y=2 x^{2}+4 x-5$ are
A. $(2,11)$
B. $(-1,-7)$
C. $(1,1)$
D. $(-2,-5)$
E. $(-4,11)$
2. The range of the function
$f=\left\{(x, y): y=5-4 x-x^{2}\right\}$ is
A. $\{y: y \leq 0\}$
B. $\{y: y \geq-9\}$
C. $\{y: y \leq 9\}$
D. $\{y: y \geq 0\}$
E. $\{y: y \leq 1\}$
3. The equation of the axis of symmetry of the function $y=2 x^{2}+3 x-6$ is
A. $x=-\frac{3}{2}$
B. $x=-\frac{3}{4}$
C. $x=-\frac{1}{3}$
D. $x=\frac{1}{3}$
E. $x=\frac{3}{4}$
4. Find the zeros of $y=2 x^{2}+x-6$.
A. 3 and 2
B. -3 and 2
C. $\frac{1}{2}$ and $\frac{3}{2}$
D. $-\frac{3}{2}$ and 1
E. $\frac{3}{2}$ and -2
5. The sum of the zeros of $y=3 x^{2}-6 x-4$ is
A. -2
B. $-\frac{4}{3}$
C. $\frac{4}{3}$
D. 2
E. 6
6. $x^{2}+2 x+3=0$ has
A. two real rational roots
B. two real irrational roots
C. two equal real roots
D. two equal rational roots
E. two complex conjugate roots
7. A parabola with a vertical axis has its vertex at the origin and passes through point $(7,7)$. The parabola intersects line $y=6$ at two points. The length of the segment joining these points is
A. 14
B. 13
C. 12
D. 8.6
E. 6.5

SET 2

1. $P(x)=a x^{4}+x^{3}-b x^{2}-4 x+c$. If $P(x)$ increases without bound as x increases without bound, then, as x decreases without bound, $P(x)$
A. increases without bound
B. decreases without bound
C. approaches zero from above the x-axis
D. approaches zero from below the x-axis
E. cannot be determined
2. Which of the following is an odd function?
I. $f(x)=3 x^{3}+5$
II. $g(x)=4 x^{6}+2 x^{4}-3 x^{2}$
III. $h(x)=7 x^{5}-8 x^{3}+12 x$
A. only I
B. only II
C. only III
D. only I and II
E. only I and III
3. How many possible rational roots are there for $2 x^{4}+4 x^{3}-6 x^{2}+15 x-12=0$?
A. 4
B. 6
C. 8
D. 12
E. 16
4. If both $x-1$ and $x-2$ are factors of $x^{3}-3 x^{2}+2 x-4 b$, then b must be
A. 0
B. 1
C. 2
D. 3
E. 4
5. If $3 x^{3}-9 x^{2}+K x-12$ is divisible by $x-3$, then $K=$
A. -40
B. -3
C. 3
D. 4
E. 22
6. Write the equation of lowest degree with real coefficients if two of its roots are -1 and $1+i$.
A. $x^{3}+x^{2}+2=0$
B. $x^{3}-x^{2}-2=0$
C. $x^{3}-x+2=0$
D. $x^{3}-x^{2}+2=0$
E. none of the above

SET 3

1. Which of the following is equivalent to $3 x^{2}-x<2$?
A. $-\frac{3}{2}<x<1$
B. $-1<x<\frac{2}{3}$
C. $-\frac{2}{3}<x<1$
D. $-1<x<\frac{3}{2}$
E. $x<-\frac{2}{3}$ or $x>1$
2. Solve $x^{5}-3 x^{3}+2 x^{2}-3>0$.
A. $(-\infty,-0.87)$
B. $(-1.90,-0.87)$
C. $(-1.90,-0.87) \cup(1.58, \infty)$
D. $(-0.87,1.58)$
E. $(1.58, \infty)$
3. The number of integers that satisfy the inequality $x^{2}+48<16 x$ is
A. 0
B. 4
C. 7
D. an infinite number
E. none of the above

SET 4

1. Express $\cos 320^{\circ}$ as a function of an angle between 0° and 90°.
A. $\cos 40^{\circ}$
B. $\sin 40^{\circ}$
C. $\cos 5^{\circ}$
D. $\sin 50^{\circ}$
E. none of the above
2. If point $P(-5,12)$ lies on the terminal side of $\angle \theta$ in standard position, $\sin \theta=$
A. $-\frac{12}{13}$
B. $\frac{-5}{12}$
C. $\frac{-5}{13}$
D. $\frac{12}{13}$
E. $\frac{12}{5}$
3. If $\sec \theta=-\frac{5}{4}$ and $\sin \theta>0$, then $\tan \theta=$
A. $\frac{4}{3}$
B. $\frac{3}{4}$
C. $-\frac{3}{4}$
D. $-\frac{4}{3}$
E. none of the above
4. If x is an angle in quadrant III and $\tan \left(x-30^{\circ}\right)=\cot x$, find x.
A. 240°
B. 225°
C. 210°
D. 60°
E. none of the above
5. If $90^{\circ}<\alpha<180^{\circ}$ and $270^{\circ}<\beta<360^{\circ}$, then which of the following cannot be true?
A. $\sin \alpha=\sin \beta$
B. $\tan \alpha=\sin \beta$
C. $\tan \alpha=\tan \beta$
D. $\sin \alpha=\cos \beta$
E. $\sec \alpha=\csc \beta$
6. Expressed as a function of an acute angle, $\cos 310^{\circ}+\cos 190^{\circ}=$
A. $-\cos 40^{\circ}$
B. $\cos 70^{\circ}$
C. $-\cos 50^{\circ}$
D. $\sin 20^{\circ}$
E. $-\cos 70^{\circ}$

SET 5

1. An angle of 30 radians is equal to how many degrees?
А. $\frac{\pi}{30}$
B. $\frac{\pi}{6}$
C. $\frac{30}{\pi}$
D. $\frac{540}{\pi}$
E. $\frac{5400}{\pi}$
2. If a sector of a circle has an arc length of 2π inches and an area of 6π square inches, what is the length of the radius of the circle?
A. 1
B. 2
C. 3
D. 6
E. 12
3. If a circle has a circumference of 16 inches, the area of a sector with a central angle of 4.7 radians is
A. 10
B. 12
C. 15
D. 25
E. 48
4. A central angle of 40° in a circle of radius 1 inch intercepts an arc whose length is s. Find s.
A. 0.7
B. 1.4
C. 2
D. 3
E. 40
5. The pendulum on a clock swings through an angle of 25°, and the tip sweeps out an arc of 12 inches. How long is the pendulum?
A. 1.67 inches
B. 13.8 inches
C. 27.5 inches
D. 43.2 inches
E. 86.4 inches
